The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIβ.
نویسندگان
چکیده
The activity of phosphatidylinositol 4-kinase class III beta (PI4KIIIβ) has been shown to be required for the replication of multiple picornaviruses; however, it is unclear whether a physical association between PI4KIIIβ and the viral replication machinery exists and, if it does, whether association is necessary. We examined the ability of the 3A protein from 18 different picornaviruses to form a complex with PI4KIIIβ by affinity purification of Strep-Tagged transiently transfected constructs followed by mass spectrometry and Western blotting for putative interacting targets. We found that the 3A proteins of Aichi virus, bovine kobuvirus, poliovirus, coxsackievirus B3, and human rhinovirus 14 all copurify with PI4KIIIβ. Furthermore, we found that multiple picornavirus 3A proteins copurify with the Golgi adaptor protein acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GPC60), including those from Aichi virus, bovine kobuvirus, human rhinovirus 14, poliovirus, and coxsackievirus B2, B3, and B5. Affinity purification of ACBD3 confirmed interaction with multiple picornaviral 3A proteins and revealed the ability to bind PI4KIIIβ in the absence of 3A. Mass-spectrometric analysis of transiently expressed Aichi virus, bovine kobuvirus, and human klassevirus 3A proteins demonstrated that the N-terminal glycines of these 3A proteins are myristoylated. Alanine-scanning mutagenesis along the entire length of Aichi virus 3A followed by transient expression and affinity purification revealed that copurification of PI4KIIIβ could be eliminated by mutation of specific residues, with little or no effect on recruitment of ACBD3. One mutation at the N terminus, I5A, significantly reduced copurification of both ACBD3 and PI4KIIIβ. The dependence of Aichi virus replication on the activity of PI4KIIIβ was confirmed by both chemical and genetic inhibition. Knockdown of ACBD3 by small interfering RNA (siRNA) also prevented replication of both Aichi virus and poliovirus. Point mutations in 3A that eliminate PI4KIIIβ association sensitized Aichi virus to PIK93, suggesting that disruption of the 3A/ACBD3/PI4KIIIβ complex may represent a novel target for therapeutic intervention that would be complementary to the inhibition of the kinase activity itself.
منابع مشابه
The 3 A protein from multiple picornaviruses utilizes the Golgi Adaptor Protein ACBD 3 1 to Recruit PI 4
11 12 The activity of phosphatidylinositol 4-kinase class III beta (PI4KIIIβ) has been shown to 13 be required for the replication of multiple picornaviruses, however it is unclear whether a 14 physical association between PI4KIIIβ and the viral replication machinery exists and if it 15 does, whether association is necessary. We examined the ability of the 3A protein from 16 18 different picorn...
متن کاملACBD3 Interaction with TBC1 Domain 22 Protein Is Differentially Affected by Enteroviral and Kobuviral 3A Protein Binding
UNLABELLED Despite wide sequence divergence, multiple picornaviruses use the Golgi adaptor acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GCP60) to recruit phosphatidylinositol 4-kinase class III beta (PI4KIIIβ/PI4KB), a factor required for viral replication. The molecular basis of this convergent interaction and the cellular function of ACBD3 are not fully understood. Using affinit...
متن کاملGBF1- and ACBD3-independent recruitment of PI4KIIIβ to replication sites by rhinovirus 3A proteins.
PI4KIIIβ recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIβ to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIβ to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact wi...
متن کاملThe Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A
Enterovirus 71 (EV71) is a human pathogen that causes hand, foot, mouth disease and neurological complications. Although EV71, as well as other enteroviruses, initiates a remodeling of intracellular membrane for genomic replication, the regulatory mechanism remains elusive. By screening human cDNA library, we uncover that the Golgi resident protein acyl-coenzyme A binding domain-containing 3 (A...
متن کاملStructural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein
Phosphatidylinositol 4-kinase beta (PI4KB) is one of four human PI4K enzymes that generate phosphatidylinositol 4-phosphate (PI4P), a minor but essential regulatory lipid found in all eukaryotic cells. To convert their lipid substrates, PI4Ks must be recruited to the correct membrane compartment. PI4KB is critical for the maintenance of the Golgi and trans Golgi network (TGN) PI4P pools, howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 86 7 شماره
صفحات -
تاریخ انتشار 2012